Multi-task Domain Adaptation for Sequence Tagging
نویسندگان
چکیده
Many domain adaptation approaches rely on learning cross domain shared representations to transfer the knowledge learned in one domain to other domains. Traditional domain adaptation only considers adapting for one task. In this paper, we explore multi-task representation learning under the domain adaptation scenario. We propose a neural network framework that supports domain adaptation for multiple tasks simultaneously, and learns shared representations that better generalize for domain adaptation. We apply the proposed framework to domain adaptation for sequence tagging problems considering two tasks: Chinese word segmentation and named entity recognition. Experiments show that multi-task domain adaptation works better than disjoint domain adaptation for each task, and achieves the state-of-the-art results for both tasks in the social media domain.
منابع مشابه
Multi-task Multi-domain Representation Learning for Sequence Tagging
Many domain adaptation approaches rely on learning cross domain shared representations to transfer the knowledge learned in one domain to other domains. Traditional domain adaptation only considers adapting for one task. In this paper, we explore multi-task representation learning under the domain adaptation scenario. We propose a neural network framework that supports domain adaptation for mul...
متن کاملDeep multi-task learning with low level tasks supervised at lower layers
In all previous work on deep multi-task learning we are aware of, all task supervisions are on the same (outermost) layer. We present a multi-task learning architecture with deep bi-directional RNNs, where different tasks supervision can happen at different layers. We present experiments in syntactic chunking and CCG supertagging, coupled with the additional task of POS-tagging. We show that it...
متن کاملA Multi-Domain Web-Based Algorithm for POS Tagging of Unknown Words
We present a web-based algorithm for the task of POS tagging of unknown words (words appearing only a small number of times in the training data of a supervised POS tagger). When a sentence s containing an unknown word u is to be tagged by a trained POS tagger, our algorithm collects from the web contexts that are partially similar to the context of u in s, which are then used to compute new ta...
متن کاملPointwise Prediction and Sequence-Based Reranking for Adaptable Part-of-Speech Tagging
This paper proposes an accurate method for partof-speech (POS) tagging that is highly domain-adaptable. The method is based on an assumption that the POS transition tendencies do not depend on domains, and has the following three characteristics: 1) it is trainable from partially annotated data, 2) it uses efficiently trainable pointwise POS taggers to allow for active learning, and 3) is more ...
متن کاملPart-of-Speech Tagging for Historical English
As more historical texts are digitized, there is interest in applying natural language processing tools to these archives. However, the performance of these tools is often unsatisfactory, due to language change and genre differences. Spelling normalization heuristics are the dominant solution for dealing with historical texts, but this approach fails to account for changes in usage and vocabula...
متن کامل